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Abstract
Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder characterized by recurrent and distinctive obsessions
and/or compulsions. The etiologies remain unclear. Recent findings have shown that oxidative stress, inflammation, and
glutamatergic pathways play key roles in the causes of OCD. However, first-line therapies include cognitive-behavioral
therapy but only 40% of the patients respond to this first-line therapy. Research for new treatment is mandatory. This review
focuses on the potential effects of cannabidiol (CBD), as a potential therapeutic strategy, on OCD and some of the presumed
mechanisms by which CBD provides its benefit properties. CBD medication downregulates GSK-3β, the main inhibitor of
the WNT/β-catenin pathway. The activation of the WNT/β-catenin could be associated with the control of oxidative stress,
inflammation, and glutamatergic pathway and circadian rhythms dysregulation in OCD. Future prospective clinical trials
could focus on CBD and its different and multiple interactions in OCD.

Introduction

Obsessive-compulsive disorder (OCD) is a neuropsychiatric
disorder which affects around 1–2% of the population in
their lifetime [1]. OCD is formed by recurrent and dis-
tinctive obsessions and/or compulsions and leads to sig-
nificant problems for patients and their families. The
etiologies of OCD remain unclear, but there are several
functional disorders in many structures as the brain’s orbi-
tofrontal cortex, limbic system, basal ganglia and thalamus
and neurotransmitters [2] Nevertheless, the links between
neuro-anatomical and biochemical model have not been
well understood definitively [3]. In the recent years, oxi-
dative stress and free radicals [4], inflammation [5] and

glutamatergic pathway [6] have been shown to play key
roles in the causes of OCD.

First-line therapies include cognitive-behavioral therapy
[7]. Augmentation strategies with antipsychotics could
provide some benefits in at least 30% of patients in the case
of treatment resistance. Only 40–60% of the patients
respond to first-line therapy and research for new treatment
beyond current guidelines is mandatory [8]. Patients with
OCD show anxiety and obsessions due to an excessive
responsiveness to threatening stimuli [9, 10] and deficits in
extinction of fear [11].

Cannabidiol (CBD) is a non-psychotomimetic phyto-
cannabinoid derived from Cannabis sativa plant which
possesses many therapeutic properties across a range of
neuropsychiatric disorders [12, 13]. Since few years, CBD
presents an increased interest as potential anxiolytic therapy
[14–16]. CBD downregulates GSK-3-β activity, an inhibitor
of WNT/β-catenin pathway [17]. Moreover, CBD was
reported to suppress pro-inflammatory signaling and neu-
roinflammation [18, 19]. A recent meta-analysis has shown
that CBD could be an interesting drug in the treatment of
several psychiatric disorders, such as schizophrenia,
cannabis-related disorders, attention deficit hyperactivity
disorder, comorbidities in autism spectrum disorder, anxiety
disorders, insomnia, bipolar disorder, post-traumatic
stress disorder, and Tourette syndrome [20, 21]. More-
over, the use of CBD drug is associated with few side
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effects, including decrease in appetite loss, irritability and
decrease in caving [22], but several studies have shown that
CBD administration present no significant complications
[23–26]. Until today, very few studies have been published
reporting effects of CBD on OCD [20, 27–29]. Only one
placebo-controlled investigation of cannabis use in OCD
was performed. The results of this study shown that smoked
cannabis, whether containing primarily THC or CBD, could
present impact on OCD symptoms [30]. Thus, this review
focuses on the potential effects of CBD, as a potential
therapeutic strategy, on OCD by acting on the WNT/β-
catenin pathway and some of the presumed mechanisms by
which CBD provides its benefit properties.

Pathophysiology of obsessive-compulsive
disorder

Obsessive-compulsive disorder and oxidative stress

Oxidative stress process presents an imbalance between
elimination and production of reactive metabolites and free
radicals (ROS and RNS) [31]. ROS production is due to cell
damages by nitration and oxidation of several lipids, pro-
teins and DNA. The NADPH oxidase (NOX) enzyme
involves ROS by intracellular oxidation of NDAPH to
NADP+. Intracellular and extracellular environmental
conditions are modulated by ROS production [32]. A
mitochondrial dysfunction associated with excessive ROS
production and a diminution in ATP production character-
ize the oxidative stress process [33]. Inflammation markers,
such as leukocytes, are recruited from the damage sites and
then participate to the increase uptake of oxygen for release
of ROS and thus, its accumulation. NOX, activated by the
inflammation process, also enhances the oxidative stress
[33, 34]. The main antioxidants are superoxide dismutase
(SOD), glutathione peroxides, and catalase. SOD is syn-
thesized in response to oxidative stress and acts as an
antioxidant but its elevation in intracellular increases cell
damage by generation of H2O2 [35]. Glutathione is one of
the first-line defense against oxidative stress. Glutathione
peroxidases are selenoenzymes which catalyze the reduc-
tion in hydroperoxide at the expense of glutathione [35].
The heme-containing enzyme Catalase has a major role in
the removal of hydrogen peroxide [36]. They protect bio-
membranes against oxidative attack, lipid peroxidation by
H202 and slow down H2O2-dependent free-radical attack
on lipids [37].

Free radicals (ROS and RNS) induce a decrease in
synaptic efficacy [38] by affecting excitatory and inhibitory
synaptic potentials [39]. Free radicals deteriorate membrane
lipids by lipid peroxidation, cause ATP depletion, DNA
damage and neurons [40]. Nervous systems are especially

prone to free-radical-induced damage, due to their highly-
oxygenated organ function [41] and their low in catalase
activities [42]. The brain presents a large amount of iron and
polyunsaturated fatty acids and moderate amount of SOD
and glutathione peroxides [35]. Several studies have shown
that free-radical-mediated neuronal dysregulation plays a
key role in the pathophysiology of psychiatric diseases by
augmented SOD activity levels, such as schizophrenia [43].
Comorbidity observed in OCD raises this possibility of
basal ganglia involvement [44]. Major depression presents
increased monoamine oxidase activity and elevated anti-
oxidant levels [45]. Recent studies have shown that SOD
levels were higher in OCD patients in comparison to control
group [35]. Higher production of reactive oxygen metabo-
lites, as superoxide anion affecting catalase activity [46], or
the increase in production of hydroxyl ions reducing cata-
lase activity [47]. Numerous studies have shown a link
between OCD and oxidative stress by involvement of free-
radicals and antioxidant defense [35, 45]. Moreover, free-
radicals damage the cell structure and extracellular matrix
compounds by disrupting genetic structure, oxidative stress,
mitochondrial dysfunction and impaired metabolism [4].

Obsessive-compulsive disorder and inflammation

Numerous evidence has shown an important role of the
immune system (i.e., inflammation) in the etiology of psy-
chiatric disorders [48]. The link between immune system
and inflammation in OCD pathophysiology is recent and
had emerged in the early nineties [6]. Indeed, the pediatric
autoimmune neuropsychiatric disorder associated with
group A β-hemolytic streptococcus (GABHS) (PANDAS)
and thus the recalled pediatric acute neuropsychiatric syn-
drome (PANS) have shown that numerous agents rather
than streptococcus could be implicated in these acute-onset
forms of OCD [49]. The hypothesis for PANS and PAN-
DAS was a link between gangliosides in basal ganglia
neurons with the GABHS and/or other agent [49]. Other
studies have presented evidence of inflammatory and
immune system increase in pediatric OCD by higher
monocytes and CD16+ monocytes compared to healthy
control subjects [50].

Nevertheless, the importance of inflammation in
OCD seems not limited to subsets of pediatric and
acute-onset forms of OCD but could be of interest in adults
[51]. The role of inflammation in OCD has been strength-
ened by the higher rate of anti-basal ganglia antibodies in
patients with primary OCD versus control subjects [52].
Moreover, significantly increased levels of cytokines and
inflammatory agents have been observed in OCD
patients, such as IL-2/4/6/10 and TNF-α in comparison to
controls [53]. In a study using positron emission tomo-
graphy (PET) imagery, inflammation presence in the
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cortico-striatal-thalamo-cortical circuit induces microglial
cell activation in OCD patients [5].

Obsessive-compulsive disorder and microglial
dysregulation

Microglia are the brain’s resident immune cells. Microglia
are small cells of the macrophage lineage from hemato-
poietic progenitors present in the brain. They can be iden-
tified in brain tissue by their expression of a numerous
macrophage markers [54]. Microglia have been presumed to
be quiescent under physiological conditions and activated
upon immune stimulation. They act in the regulation of
neurogenesis [55], neuronal function and homeostasis under
physiological conditions and in the absence of inflammation
[56]. The dysregulated activation of microglia leads to the
infiltration of brain by macrophages under pathological
conditions [56]. A specific role for microglia in OCD have
been suggested in mouse models [57]. However, this
mechanism remains unclear.

Obsessive-compulsive disorder and glutamatergic
pathway

Glutamatergic dysfunction is becoming the principal focus
in pharmacological research in the OCD field. Glutamate is
an amino-acid responsible for the brain’s primary excitatory
neurotransmission. Glutamate is considered as the main
neurotransmitter within the cortico-striatal-thalamic circuit
involved in OCD [58]. Glutamatergic neurons are embed-
ded in every brain circuit in comparison to dopamine and
serotonin which are used by a small minority of neural cells
in the brain. Numerous evidences have shown a glutama-
tergic dysfunction in OCD [6, 59].

Glutamate is the main excitatory neurotransmitter in
brain and is present in more than 50% of synapses. This
signaling plays a major role for neuronal plasticity, memory
and learning [60]. Rapid neurotoxicity enhanced by neu-
ronal excitotoxin has been observed with abnormal gluta-
mate levels [61]. In neurons, glutamate is stored in synaptic
vesicles from which it is released. Glutamate release
increases glutamate concentration in the synaptic cleft to
bind ionotropic glutamate receptors. The main consistent
candidate gene in OCD is SLC1A1 (solute carrier, family 1,
and member 1) gene [62]. SLC1A1 encodes for the neu-
ronal excitatory Na+-dependent amino-acid transporter 3
(EAAT3). EAAT1 and EAAT2 are the main astrocyte
glutamate transporters whereas EAAT3 is the major neu-
ronal glutamate transporter. Glutamate is converted into
glutamine in astrocytes and thus release it. Then, glutamine
is take up by neurons to be re-converted into glutamate [63].
The role of the EAAT3 is to control glutamate spillover
which affects presynaptic N-methyl-D-asparate (NMDA)

and metabotropic glutamate receptors activity [64, 65].
EAAT3 activity is dysregulated by the overexpression of
GSK-3β [66].

Augmented glutamate levels in adult unmedicated
patients with OCD has been shown in cerebrospinal fluid
(CSF) [67, 68]. Moreover, studies based on magnetic
resonance spectroscopy (MRS) have observed increased
glutamate and related components in brain areas, including
central nodes of the cortico-striatal-thalamo-cortical circuit
in OCD patients [6, 69]. In addition, genetic studies
have involved a correlation of glutamatergic genes with
OCD [70].

The endocannabinoid system and obsessive-
compulsive disorder

Increased activity in the cortico-striato-thalamo-cortical
circuit has been associated with OCD [71, 72]. The endo-
cannabinoid system (ECS) is localized throughout
the central and peripheral nervous systems. The ECS could
be associated with the maintenance of homeostasis to con-
trol energy balance, neurogenesis, immune system, sleep/
awake cycle, stress reactivity, pain, reward process [20],
glutamate and serotonin [73], and dopamine pathways [74].
In the CNS, the ECS can participate in the prevention of the
initiation of excessive neuronal stimulation [75] by con-
trolling downstream targets, including the goal of “relax,
sleep, forget and protect” [76]. The ECS is consists of two
receptors (CB1R and CB2R), endogenous ligands (“endo-
cannabinoids”), and synthetic/metabolic enzymes [77].

CB1R and CB2R are bound by endocannabinoids to
involve cellular pathways to induce gene transcription,
synaptic function, and cell migration [20]. Endocannabi-
noids can also activate several non-cannabinoid receptors,
such as the transient receptor potential vanilloid 1 (TRPV1)
receptor, PPARs, and the orphan G protein-coupled 55
receptor (GPCR55) [78, 79]. CB1R is the main receptor of
the ECS in the CNS. High levels of CB1R have been found
in the basal ganglia, hippocampus, cerebellum, amygdala,
and in prefrontal cortex. These brain regions are involved in
OCD, suggesting a role of ECS in the neural circuitry of
OCD [80]. The use of cannabis-related medicines shows its
greater interest in several diseases, through the ECS, in
brain development [81, 82], the stress regulation [80], the
neuromodulation of brain system [83], and also the patho-
physiology of OCD [84]. The ECS presents several targets
involved in psychiatric conditions [30]. The ECS can reg-
ulate neurophysiological mechanisms such as sleep [85],
memory [86], and affective state [80]. The ECS could affect
symptoms of OCD, as a disabling condition marked by
recurrent anxiety‐producing thoughts, repetitive behaviors
[20], and control of neural circuitry [80].
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Cannabidiol

Cannabinoids refer to a heterogeneous group of compounds
classed into three major groups: endogenous, synthetic, and
phytocannabinoids [13, 87]. CBD is a non-psychotomimetic
phytocannabinoid derived from Cannabis sativa plant. The
Cannabis sativa plant produces 66 components, such as
delta9-tetrahydrocannabinol (THC), responsible for psycho-
logical effects, and CBD, the major non-psychotomimetic
component in the plant [88]. In contrast to THC, CBD does
not interact with blood pressure or body temperature and does
not lead to psychomotor psychological function [89]. CBD
attenuates brain damages and neurodegeneration. Humans can
tolerate high dose of CBD [89]. Furthermore, CBD can
interact with synaptic plasticity and induces neurogenesis.
The mechanisms of the CBD effects remain clear but seem to
have multiple pharmacological targets. Traditional medicines
used Cannabis sativa for centuries. CBD, one of the main
component of Cannabis sativa, has recently highlighted its
interest for many neuropsychiatric disorders [90]. CBD pre-
sents numerous possible medication properties including
anxiolytic, antidepressant, neuroprotective, anti-inflammatory
and immunomodulatory [13]. Cannabinoids could be con-
sidered as a new class of drugs because of their possible
actions on neuropsychiatric disorders [91]. CBD has a
potential medication role in neuropsychiatric disorders such as
schizophrenia, epilepsy, addiction, and neonatal hypoxic-
ischemic encephalopathy [92].

Cannabidiol in obsessive-compulsive
disorder

Few studies have suggested that CBD could be a novel
therapeutic for OCD [30, 78, 93–95]. All the mechanisms of
CBD actions in OCD remain unknown [96]. Nevertheless, the
anti-OCD properties of CBD could be attributed to the indirect
control of CB1 receptor-mediated neurotransmission and the
increase of anandamide levels [97]. CBD presents little direct
activity with CB1R [98], and some studies have shown a
negative allosteric control role of CBD on CB1R [98, 99]. The
actions of CBD should act on the ECS by the CB1R with
indirect pathways. CBD could stimulate CB1R by the inhi-
bition of FAAH to increase the levels of N-
arachidonoylethanolamine (AEA) [98]. AEA is targeting by
COX-2 which is associated with the WNT/β-catenin pathway
[97]. Moreover, CBD can facilitate adenosine signaling to
induce anxiolytic effects [99]. Other studies have shown that
CBD can stimulate the WNT/β-catenin and PI3K/Akt path-
ways and produces medication effects in schizophrenia [100–
102]. Several trials have investigated the anti-psychiatric
properties of CBD [103–108]. CBD could control the
mechanism underlying the serotonin release and then

control OCD symptoms [95]. CBD could reduce anxiety and
psychotic symptoms [90] and this, with few adverse effects
[109].

Activation of the canonical WNT/β-catenin
pathway by Cannabidiol: a potential
therapeutic strategy

WNT/β-catenin pathway

WNT name is derived from Wingless drosophila melano-
gaster and its mouse homolog Int. WNT/β-catenin pathway
is implicated in numerous signaling and regulating path-
ways, including embryogenesis, cell proliferation, migration
and polarity, apoptosis, and organogenesis [110]. However,
during numerous pathological states, the WNT/β-catenin
pathway can be dysregulated, such as inflammatory,
metabolic and neurological disorders, tissue fibrosis, and
cancers [111].

The WNT pathway is one of the member of the secreted
lipid-modified glycoproteins family [112]. WNT ligands are
produced by neurons and immune cells in the central ner-
vous system [113]. Control of the WNT/β-catenin pathway
implicates, embryonic development, cell fate,
epithelial–mesenchymal transition, metabolism. WNT
pathway dysregulation contributes to several neurodegen-
erative diseases including PD [114–117]. The WNT path-
way has a main stage which is the β-catenin/T-cell factor/
lymphoid enhancer factor (TCF/LEF). Accumulation of β-
catenin in the cytoplasm is modulated by the destruction
complex composed by AXIN, glycogen synthase kinase-3
(GSK-3β) and tumor suppressor adenomatous polyposis
coli (APC). In absence of WNT ligands, this destruction
complex leads to hyper-phosphorylation of the cytoplasmic
β-catenin and involves its proteasomal degradation. In
contrast, in their presence, the WNT ligands complex to
Frizzled (FZL) and LDL receptor-related protein 5/6 (LRP
5/6) to stop the action of the destruction complex and to
prevent the proteasomal β-catenin degradation. β-catenin
translocates to the nucleus to bind to TCF/LEF. This phe-
nomenon stimulates the WNT target genes [118–120].

GSK-3β is one of the main inhibitors of the WNT/β-
catenin pathway [121–126]. GSK-3β, an intracellular
serine-threonine kinase, is a major controller and inhibitor
of the WNT pathway [127]. It is implicated in the regulation
of numerous pathophysiological pathways, including cell
membrane signaling, cell polarity, and inflammation [128–
130]. GSK-3β directly inhibits cytoplasmic β-catenin and
stabilizes it leading to its nuclear migration. Inflammation is
an age-related phenomenon associated with stimulation of
GSK-3β activity and the diminution of the WNT/β-catenin
signaling [131] (Fig. 1).
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WNT/β-catenin pathway: a potential target in OCD

Very few studies have focused on the interest of the WNT/
β-catenin pathway in OCD. Brain-derived neurotrophic
factor (BDNF) is a member of the neurotrophin family
which includes nerve growth factor, neurotrophin-3, and
neutorophin-4. BDNF is a well investigated factor asso-
ciated with mental illness [132, 133]. BDNF is broadly
expressed in the CNS and supports the survival of neurons
during development [134] The secretion of BDNF is
activity dependent, and it is shown to be secreted by both
presynaptic and postsynaptic terminals at different stimu-
lation intensities [135]. Currently, a recent study have
shown that BDNF overactivation can lead to the growth of
neurons by the interplay of the canonical WNT pathway
through the downregulation of GSK-β [136]. BDNF acti-
vation is associated with the bind to Tropomyosin receptor
kinase B (TrK B) leading to PI3/Akt pathway stimulation.
Protein kinase B (Akt) pathway is one the key inhibitor of
the GSK-3β [137]. Moreover, data suggest that the down-
regulation of BDNF could be associated with OCD [138] or
with a hoarding sub-phenotype [139]. Recent investigations
found that multiple haplotypes in the BDNF gene were
associated with OCD diagnosis [138, 140, 141].

In parallel, single-nucleotide polymorphisms within the
canine neuronal cadherin gene (CDH2) presented a main
risk for canine compulsive disorder (CCD) [142]. Cadherins
constitute a superfamily of adhesion molecules featuring an
N-terminal tandem series of ectodomains, followed by a
single anchoring transmembrane domain and a C-terminal
cytoplasmic region (B150 amino acids) which binds cad-
herins to the underlying cytoskeleton. In the case of CDH2/
N-cadherin, this is via sequential binding of beta-catenin to

alpha-catenin and then through intermediates to actin
[143, 144]. N-cadherin is required for critical brain
mechanisms, such as long-term potentiation, pre- to post-
synaptic adhesion, dendritic spine elongation, thereby con-
trolling glutamate receptor trafficking, and neuronal
migration [145–147].

The CDH2 N845S variant lies in the highly conserved
cytoplasmic domain of β-catenin. Loss of integrity of this
domain leads to loss of adhesive function [148]. N845 is
localized in the “interaction region 2” of the extended
region through which N-cadherin binds with β-catenin
[149]. A hydrogen bond is formed with a domain of β-
catenin. Phosphorylation of Y654 by Src and other cyto-
plasmic kinases reduces the association of cadherins with β-
catenin, leading to the dissociation of the cadherin-β-catenin
complex. Thus, the N845S mutation in N-cadherin appears
well placed to modulate cadherin–β-catenin interactions in
OCD [150]. Cadherins were shown to interact with this
WNT pathway in several ways [151–153]. Cadherins are
linked to the actin cytoskeleton through their binding to β-
catenin, which participate to the adherens junction [154].
The molecular processes by which N-cadherin can func-
tionally bind to LRP5/6 involve the intracellular recruitment
of AXIN, leading to the formation of an AXIN–LRP5
complex involving AXIN-binding sites in the cytoplasmic
tail of LRP5 [155]. The downregulation observed of both
BDNF and N-cadherin in OCD participate in the potential
decrease in WNT pathway (Fig. 2).

Cannabidiol and WNT/β-catenin pathway

A recent study has observed that mutant murine models of
OCD presented increased GSK-3β activity and thus its

Fig. 1 Activated and
deactivated WNT pathway.
Inactivated WNT leads to the
activation of the beta-catenin
complex destruction and then,
the non-activation of
transcription gene targets.
Activated WNT leads to the
inactivation of the beta-catenin
destruction complex resulting in
its cytosolic accumulation and
then its nuclear translocation to
stimulate transcription gene
targets.
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inhibition could be a treatment of perseverative behaviors
[156].

Dysfunction of GSK-3β is involved in the pathogenesis
of several diseases, including neuropsychiatric disorders
[157]. GSK-3β is a regulator of several pathways such as
inflammation, neuronal polarity, or either cell membrane
signaling [129]. GSK-3β is known to be the main inhibitor
of the WNT/β-catenin signaling [125, 158–160]. GSK-3β
downregulates the canonical WNT/β-catenin pathway by
inhibiting β-catenin cytosolic stabilization and its translo-
cation in the nucleus [161]. Moreover, several studies have
shown a link between neuroinflammation and the increase
of the GSK-3β activity and in parallel the decrease of
the WNT/β-catenin pathway and the Akt pathway [121].

CBD downregulates the expression of GSK-3β through
the promotion of the PI3K/Akt signaling [162, 163]. PI3K/
Akt signaling regulates GSK-3β activity [164]. Cannabi-
noids control the PI3K/Akt/GSK-3β axis [165, 166]. Genes
encoding for the PI3K/Akt pathway are increased in CBD-
GMSCs (mesenchymal stem cells derived from gingiva
treated by CBD) [162].

WNT/β-catenin pathway and oxidative stress

FoxO (Forkhead box class O) transcription factors are main
intracellular controllers of numerous metabolic signaling
such as glucose production, and the cellular response to
oxidative stress [167]. ROS is associated with the inhibition
of the WNT pathway by diverting β-catenin from TCF/LEF
to FoxO [168]. This leads to the accumulation and binding
of β-catenin to FoxO as a cofactor, and in increasing FoxO
transcriptional activity in the nucleus [169, 170]. FoxO
stimulates apoptotic genes [171–173]. FoxO3a stops the
cell-cycle by stimulating of the production of the cyclin-
dependent kinase inhibitor p27 kip1 and the inhibition of

cyclin D1 expression [174, 175]. The activation of FoxO
induces apoptosis [176]. However, the activation of the
WNT pathway can downregulate FoxO3a in the cytosol to
prevent the loss of mitochondrial membrane permeability,
cytochrome c release, Bad phosphorylation, and activation
of caspases which activates ROS production and oxidative
stress [177].

WNT/β-catenin pathway and inflammation

The stimulation of the WNT pathway cascade restrains
inflammation and leads to the neuroprotection via interac-
tions between microglia/macrophages and astrocytes
[178, 179].

Several studies have shown a negative crosstalk between
WNT/β-catenin pathway and NF-ϰB signaling pathway,
one of the main marker of inflammation [180]. The NF-ϰB
transcription factor family belongs of five members in the
cytosol under non-activated conditions: NF-ϰB 1 (p50/
p105), NF-ϰB 2 (p52/p100), RelA (p65), RelB, and c-Rel
[181]. Β-catenin can complex with RelA and p50 to
diminish the activity of the NF-ϰB signaling [182]. More-
over, by interacting with the PI3K, β-catenin inhibits the
functional activity of NF-ϰB [183]. This inhibitory function
of β-catenin on NF-ϰB pathway activity has been observed
in numerous cell types, such as fibroblasts, epithelial cells,
hepatocytes, and osteoblasts [180]. In parallel, the over-
activation of GSK-3β leads to an inhibition of the β-catenin
and then an activation of the NF-ϰB pathway [184]. The
potential protective action of β-catenin was due to the
activation of PI3K/Akt pathway and thus the reduction of
TLR4-driven inflammatory response in hepatocytes [185].
NF-ϰB activation leads to the diminution of the complex β-
catenin/TCF/LEF by the upregulation of LZTS2 in cancer
cells [186]. DKK, a WNT inhibitor, was a target gene of the

Fig. 2 WNT pathway
inhibition in OCD. In OCD, the
downregulation of the BDNF is
associated with a nonbinding
with Tropomyosin receptor
kinase B (TrK B) leading to the
non-activation of the PI3K/Akt
pathway and then to the non-
inhibition of the GSK-3β. The
disruption of the N-cadherin by
a competitor peptide leads to its
inhibit its bind to AXIN and
LRP5/6 enhancing the inhibition
of the WNT pathway.

A. Vallée et al.



NF-ϰB pathway leading to a negative feedback to diminish
the β-catenin signaling [187]. Activated Β-catenin inhibits
the NF-ϰB-mediated transcription of pro-inflammatory
genes. This effect is controlled by the GSK-3β. GSK-3β
is a direct inhibitor of the β-catenin levels and an activator
of the NF-ϰB pathway [188, 189].

WNT/β-catenin pathway and glutamatergic pathway

Β-catenin activates EAAT2 an GS at the transcriptional
level in progenitor-derived astrocytes through the activation
of TCF/LEF [190]. The knockdown of β-catenin leads to
the diminution of EAAT2 and GS expression in
prefrontal cortex [191]. In astrocytes, the inhibition of β-
catenin is associated with diminution of both EAAT2 and
GS expression [192]. The dysregulation of the WNT/β-
catenin pathway induces a glutamate excitotoxicity result-
ing in the increase of both inflammation and exudative
stress [192].

Cannabidiol and oxidative stress

Energy and glucose metabolisms involved during oxidative
stress are mainly controlled by the intracellular FOXO
transcription factors (FOXO1, 3a, 4) [167]. The interaction
between β-catenin and FOXO transcription factors pro-
motes cell quiescence and cell-cycle arrest. Β-catenin
blocks its transcriptional complex with TCF/LEF through
the interaction with FOXO-induced ROS [168]. β-catenin
does not translocate to the nucleus and thus accumulates in

the cytosol to inactivate the WNT/β-catenin pathway
(Fig. 3) [169, 170].

CBD can reduce the redox balance through the mod-
ification of both the level and activity of oxidants and
antioxidants [193]. CBD stops the free-radical chain reac-
tions through the capture of free radicals and then by
reducing their activities [194]. CBD downregulates the
oxidative conditions through the prevention of the forma-
tion of superoxide radicals, generated by xanthine oxidase
(XO), and NADPH oxidase (NOX1 and NOX4) [195, 196].
Moreover, CBD can enhance the diminution in NO levels in
the liver of doxorubicin-treated mice [197]. CBD dimin-
ishes reactive oxygen species (ROS) production through the
chelation of transition metal ions implicated in the Fenton
reaction to form extremely reactive hydroxyl radicals [198].
CBD acts on the classic antioxidant butylated hydro-
xytoluene (BHT) to prevent the dihydrorodamine oxidation
in the Fenton reaction [199].

The antioxidant activity of CBD is characterized by the
activation of redox-sensitive transcription factor which
referred to the nuclear reythroid 2-related factor (Nrf2)
[200] responsible for the transcription of cytoprotective
genes [201]. Superoxide dismutase (SOD) and enzymatic
activities of Cu, Zn, and Mn-SOD, which are responsible
for the metabolism of superoxide radicals, are increased by
CBD [202]. Glutathione peroxidase and reductase are
increased by CBD to decrease the malonaldehyde (MDA)
levels [203]. Enzymatic activities are altered during oxida-
tive modifications of proteins. CBD, by targeting glu-
tathione and cytochrome P450, car inhibit their biological
activity to decrease oxidative stress [197, 204]. Moreover,

Fig. 3 Cannabidiol
interactions with oxidative
stress, inflammation, and
glutamatergic pathways. CBD
directly inhibits GSK3b to
increase the activity of the WNT
leading to decrease
inflammatory process (byt
inactivating the PPARg), to
diminish the oxidative stress (by
decreasing FOXO) and then to
modulate the glutamatergic
pathway (by modulating the
EEAT3).

Possible actions of cannabidiol in obsessive-compulsive disorder by targeting the WNT/β-catenin pathway



through the diminution of ROS levels, CBD can prevent
and protect nonenzymatic antioxidants [202], including
vitamins A, E, and C [205].

Cannabidiol and inflammation

Cannabinoids present anti-inflammatory action by endo-
genous receptors, such as cannabinoid receptor 1 (CB1) and
cannabinoid receptor 2 (CB2) [206]. Cannabinoids interact
with PI3K/Akt pathway through [207, 208]. N-Oleoyl
glycine (OLGly), a lipoamino acid, increases adipogenic
genes including PPARγ, a marker of inflammation, and the
mRNA expression of CB1 receptor. The inhibition of CB1
receptor by its antagonist SR141716 downregulates the
actions of OLGly on the expression of PPARγ. Moreover,
OLGly activates the Akt pathway and inhibits FoxO activity
[209]. CBD can bind PPARγ [102, 210]. PPARγ is a main
factor of inflammation by interacting with NFκB. This bind
occurs between the ligand-binding domain of PPARγ and
the Rel homology domain region of the p65 subunit of
NFκB. Proteasomal degradation of p65 is caused by Lys48-
linked polyubiquitin of the ligand-binding domain of
PPARγ [211]. Thus, PPARγ can modulate inflammation
through the ubiquitination proteasomal degradation of p65
leading to the control of cyclooxygenase (COX-2), TNF-α,
IL-1β, and IL-6 [102]. PPARs are ligand-activated tran-
scription factors which bind PPRE (PPAR-response ele-
ments). PPARs are implicated in numerous
pathophysiological mechanisms, such as cell differentiation,
proteins metabolism, lipids metabolism, carcinogenesis
[212, 213], adipocyte differentiation, insulin sensitivity, and
inflammation [214, 215]. PPARγ ligands, such as thiazoli-
dinediones (TZDs), are able to decrease the inflammatory
activity [216]. A negative crosstalk has been well described
between PPARγ and the WNT pathway [33, 158, 217, 218].
The PI3K/Akt pathway, which is positively induced by β-
catenin [160, 217, 219–221], acts through the phosphor-
ylation of GSK-3β to negatively control the PPARγ
expression [222]. PPARγ agonizts decrease β-catenin
expression by over-activating GSK-3β [223]. Moreover,
PPARγ agonizts stimulate Dickkopf-1 (DKK1) activity to
diminish the canonical WNT/β-catenin pathway and then
downregulate the differentiation of fibroblasts [224].
Moreover, PPARγ agonizts stimulate GSK-3β to diminish
β-catenin expression [223]. In parallel, β-catenin directly
inhibits NF-κB activity (Fig. 3) [188, 189].

Cannabidiol and glutamatergic pathway

Few studies have investigated the interaction between the
endogenous cannabinoid system and the glutamatergic

pathway in the brain [225]. CBD diminishes the glutamate
release in neural signaling implicated in compulsive beha-
vior [226]. Many studies highlighted that the actions of
CBD on dopamine and GABA levels was correlated with its
strong antioxidant properties through the modulation of
nitric oxide synthase expression and the inhibition of ROS-
generating NADPH oxidases [227]. However, it has been
highlighted that endogenous cannabinoids can bind to the
cannabinoid CB1 receptor and dampen presynaptic gluta-
mate release [228]. Moreover, the inhibition of GSK-3β can
decrease EAAT3 activity [66]. Nevertheless, the relation
between CBD and the glutamatergic pathway remains
unclear. CBD can block the actions of CB1R/CB2 com-
bined receptor agonist [229] and can act as CB1R antago-
nist [230] (Fig. 3).

Circadian rhythms in OCD: new insights

Circadian rhythms

Circadian rhythms (CRs) are important biological
mechanisms found in all universal processes. Their main
characteristic resides in an innate oscillation which is found
associated with a period longer than 1 day. All the living
organisms studied present this kind of oscillations. Many
cellular functions have shown temporal variations which
were induced by these circadian pathways, including gene
expression, metabolic pathways, but also molecular and
cellular pathways. Different integration strata make it pos-
sible to observe CRs, such as the behavior of endocrine,
physiological or neuronal cells. Although the coordination
of CRs are shaped by structures derived from specific
pacemakers, so-called primary circadian oscillations are
controlled at the cellular level. These oscillations are
determined by many clock genes [231]. The modulation of
the circadian clock is based on a temporal tracking system
at the intracellular level that allows organisms to modulate
their direction and thus adapt their behavior and physiolo-
gical functioning during their lifespan [232]. It has been
recognized that many animal species possessing this circa-
dian clock are formed by specific sets of transcription fac-
tors that make up its molecular architecture. These factors
are used in both positive and negative feedback which
themselves are autonomously controlled by the cell [233].

Endogenous oscillations generate a repetition period
close to 24 h in order to maintain constant ambient condi-
tions for the organism. These oscillators, at the molecular
level, are based on the products of clock regulating genes
hierarchized in transcriptional feedback loops. Thus, the
observed circadian oscillations result from post-
transcriptional modifications of proteins [234]. These
complex loops are regulated by activators of transcription of
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the clock gene which in turn are regulated by clock genes
having a negative feedback inhibiting their expression by
disrupting the activity of their activators [235]. Many input
channels concern environmental information interacting
with the different components of the oscillators. The
oscillators are synchronized with the 24 h solar day. The
input channels generate a time of day for transposition by
the oscillators to the output channels. These output path-
ways thus control the expression of circadian clock genes to
generate what is called rhythmicity. In parallel, the output
pathways are planned to be rhythmic and then modulated by
the transcription factors of the clock gene. These com-
pounds, in turn, downregulate the circadian clock genes in
specific ways corresponding to each time of day [236]. The
body’s internal clock allows this process to synchronize
with its environmental time. To be synchronous with the
environment, the input channels remain vital to maintain
the synchronous rhythmicity of the oscillators. Input chan-
nels can reset oscillator activity to maintain the 24 h period
and remain compliant with the environment [236]. The
signals coming from the environment are detected by the
input channels in order to adapt the control mechanisms of
the activity of the oscillators in order to maintain a perfect
synchronization with the time of day. This phenomenon can
be easily observed in many physical mechanisms such as
nutrition, social interactions or even the adaptation of body
temperature [237, 238]. In addition, the clock allows the
implementation of a strategy called gating to restrict
responses to environmental signals at certain times of
the day.

Diurnal organisms are not sensitive to light pulses during
the day. Even so, during the night, a pulse of light can move
the clock forward or backward to synchronize diurnal
mammals with the environment [233]. Environmental sig-
nals can interact with molecular oscillators in some cells of
multicellular organisms. Whereas in single-celled organ-
isms, each cell is controlled by oscillators in response to

light [239]. However, in multicellular organisms, only a part
of the cells has sensory capacities leading to clock oscilla-
tors. The oscillators are located in mechanisms composed of
a main pacemaker associated with peripheral oscillators
[240]. Faced with these so-called bewitching inputs, the
organism has certain nervous systems which have envir-
onmental locating capacities such as central oscillators or
cardiac pacemakers rather than towards individual cells. In
humans, the sensory clock inputs are located in the brain,
where signals from the primary pacemaker lead to oscilla-
tors in certain body tissues.

Nonvisual retinal ganglion cells receive and perceive
light, and transmit this information to the primary pace-
maker (located in the hypothalamus) through neural con-
nections. The central stimulator synchronizes the oscillators
with other tissues through the circadian input pathways of
the nervous system to peripheral cellular systems. In addi-
tion, to maintain the drive of these peripheral oscillators by
the environment, this central system guarantees that the
cellular oscillations within the tissues are always in rhyth-
mic phase between cellular and individual phases [241].
The sleep–wake mechanism is modulated by both CRs and
homeostasis. Sleep pressure was stimulated during the
waking phase and then decreased during the sleep phase.
This model is thus controlled by the light-dark cycle [242].
Thanks to a feedback curve, this model can also control
CRs and thus act on them. For many studies, this model can
be defined as an interface between environmental infor-
mation (social, mood, and cognition) and CRs [243].

Circadian clock

Numerous physiological processes are modulated by the
circadian “clock” (circadian locomotors output cycles
kaput) (Fig. 4). The circadian clock is located in the
hypothalamic suprachiasmatic nucleus (SCN). CRs are
endogenous and entrainable free-running periods that last

Fig. 4 Circadian clock genes
mechanism. The clock consists
of a stimulatory loop, with the
Bmal1/Clock heterodimer
stimulating the transcription of
Per and Cry genes, and an
inhibitory feedback loop with
the Per/Cry heterodimer
translocating to the nucleus and
repressing the transcription of
the Clock and Bmal1 genes. An
additional loop involves the
RORs and Rev-Erbs factors with
a positive feedback by ROR
and a negative feedback by
Rev-Erbs.
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~24 h. Several transcription factors can modulate CRs.
These factors are called Per1 (Period 1), Per2 (Period 2),
Per3 (Period 3), Bmal1 (brain and muscle aryl-hydrocarbon
receptor nuclear translocator-like 1), Cry 1 and Cry 2
(Cryptochrome 1 and 2), and Clock (circadian locomotor
output cycles kaput) [244–246]. They are controlled by
negative and positive self-loop-regulation mediated by CRs
[233, 247]. Clock and Bmal1 heterodimerize and involve to
the transcription of Per1, Per2, Cry1, and Cry2 [248]. The
Per/Cry heterodimer downregulates its stimulate by a
negative feedback. It translocates back to the nucleus to
inhibit the Clock/Bmal1 complex and then inactivate its
proper transcription [248]. The Clock/Bmal1 heterodimer
stimulates the transcription of retinoic acid-related orphan
nuclear receptors, Rev-Erbs and retinoid-related orphan
receptors (RORs). By a positive feedback, RORs stimulates
the transcription of Bmal1, while by a negative feedback,
Rev-Erbs inhibits their transcription [248].

Circadian rhythms and OCD

CRs are 24 h autonomous cycles form gene expression to
behavior occurring environmental inputs and the dysregu-
lation of these rhythm expressions can lead in diseases
[249]. Recent findings have shown that CRs may have a
major role in psychiatric diseases [243, 250]. Mono-
aminergic neurotransmitters, immune system, and
hypothalamic–pituitary–adrenal axis are impacted by the
dysregulation of CRs [251]. However, small evidence has
highlighted the role of CRs in OCD [252, 253]. OCD
patients report delayed sleep phase disorder [254]. In OCD,
secretion of cortisol and melatonin is altered [255] and total
sleep time is decreased [256].

Recent studies have shown a possible relationship
between circadian rhythms and chronotype with OCD
[253, 257, 258]. The abnormalities in CRs in OCD could be
highlighted by diurnal variations [253], such as the like-
lihood of experiencing obsessions peaks in the afternoon
[259]. This pattern is corroborated by other findings
showing anxiety-related symptoms peak mid-day in a
sample of adults with panic attacks [260]. These symptoms
are clearly distinct from findings suggesting that anxiety
declines across the day in healthy adults [261, 262]. OCD
symptoms in the afternoon could show a deviation from the
normative diurnal rhythm of anxiety. Nevertheless, few
studies have investigated this increased theorizing on a role
of CRs in OCD [252, 253, 263], and no recent studies have
investigated mid-sleep, the preferred method for measuring
chronotype [264] or physiological indicators of circadian
rhythms, such as dim light melatonin onset or core body
temperature in OCD. An association between fewer hours
of light exposure and increased OCD prevalence has been
previously observed [265].

Circadian rhythms and oxidative stress

The deregulation of Per leads to of OS associated with
circadian oscillations [266]. The deletion of Per enhances
oxidative injuries and shortens lifespan [267, 268].
Per deletion causes oxidative injuries in neurons [267].
High levels of cortex oxidative damages are associated
with Bmal1 depletion [269]. Bmal1 directly controls
the transcription of numerous redox defense genes in
the brain [269].

Circadian rhythms and inflammation

Chemokines and cytokines are secreted in circadian rhythm
manner [270]. There levels can be detected at different
blood levels according the day phases. Bmal1 and Clock
control these expressions. Activation of Clock leads to the
activation of NF-κB pathway [271]. The diminution of
clock by Bmal1 also decreases the expression of NF-κB. In
parallel, Cry decreases protein kinase A to reduce inflam-
matory factors [272].

Circadian rhythms and glutamatergic pathway

Few studies have focused on this interaction. Nevertheless,
light-driven in nervous system responses are controlled
by the excitatory neurotransmitter glutamate [273].
NMDA receptors have light-induced behavioral shifts
[274]. In astrocytes, glutamate is one the main mediator of
the control of circadian function in the nervous system
[275]. Glutamate drives circadian rhythmicity of Cry and
Per [276].

Circadian rhythms and WNT/β-catenin pathway

RORs can control the WNT/β-catenin pathway [277]. CR
genes can control the cell-cycle progression by targeting the
WNT pathway [278, 279]. Bmal1 knockdown is associated
with the diminution of the WNT/β-catenin pathway [280].
In wild-type mice, WNT-related genes levels are elevated
and higher than the levels shown in Bmal1 knockdown
mice [281, 282]. Progression of cell-cycle are modulated by
Bmal1 which stimulates the WNT/β-catenin pathway [283].
Bmal1 enhances the transcription of β-catenin, decreases the
degradation of β-catenin and then, downregulates the GSK-
3β activity [284]. In the intestinal mucosa of ApcMin/+
mice, the degradation of Per2 increases β-catenin levels
[285]. In physiological conditions, CR genes act in accurate
feedback loops and keep the molecular clockworks in the
SCN. CR gens permit the control of peripheral clocks
[233, 247]. Per1 and Per2 maintain cell CRs and control
cell-related gene activity, including c-Myc, a target of the
WNT pathway [286, 287].
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In parallel, PPARγ binds the clock genes [288]. PPARγ
directly binds with the clock genes and shows diurnal var-
iations [289, 290]. Dysregulation diurnal rhythms are
involved by a decrease of PPARγ expression [291]. CRs
metabolism is controlled by PPARγ [291]. PPARγ agonizts
can activate Bmal1, the heterodimer Clock/Bmal1
[290, 292], and Rev-Erb [293]. Decrease of Nocturin leads
to the diminution of the oscillations of PPARγ. In physio-
logical conditions, Nocturin acts on PPARγ to enhance its
transcriptional activity [294]. Diminution of PPARγ
expression damages the circadian function of 15-Deoxy-D
12,14-prostaglandin J2 (15-PGJ2) [291]. By binding with
PPARγ, the WNT/β-catenin pathway presents another way
to interact on the CRs [114].

Novel role of CBD in Circadian rhythms

Few studies have shown the role of CBD on CRs [295].
However, pharmacological insights have presented that
some elements of the endocannabinoid family can control
the sleep phase [296]. CBD has been shown to upregulated
Cry and Per1 [297]. Here, we can hypothesize that CBD can
act on CRs by modulating the activity of the WNT/β-cate-
nin pathway and then on oxidative stress, inflammation and
glutamatergic pathway in OCD.

Conclusion

Currently, few studies have studied CBD as possible
alternative therapeutic way to treat OCD patients. How-
ever, CBD may appear to be interesting against OCD
because of its potential inhibitory effect on oxidative
stress, inflammation, and glutamatergic pathway and this
with few adverse effects. No study has still studying the
expression of the WNT/β-catenin pathway in OCD.
Nevertheless, the over-activity of the GSK-3β, the main
inhibitor of the WNT pathway, in OCD patients is con-
sistent with a downregulation of the WNT pathway in this
disease. By stimulating the WNT/β-catenin pathway,
through the diminution of GSK-3β, CBD could be an
innovative therapeutic way in OCD. New insights on
CBD could be its use by acting on CRs which modulate
the different mechanisms involved in OCD. Future pro-
spective studies could focus on CBD and its different and
multiple interactions in OCD.
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